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DYNAMICS OF SHEET CAVITATION AND LARGE SCALE SHEDDING

Charles L. Merkle
University of Tennessee Space Institute
411 B.H. Goethert Parkway -
Tullahoma, TN 37388

Introduction

Cavitation deals with the vaporization of a liquid as it flow past or through a body of
interest. As the flow velocity increases and the local pressure decreases, the liquid can
change to vapor if the overall pressure is sufficiently close to the vapor pressure. If the
pressure change in a flowing liquid brings the liquid below its vapor pressure, local
regions of the fluid can change phase and become vapor. In general, the phenomenon of
cavitation increases as the overall pressure in the system 1is reduced.

While cavitation remains a very fascinating physical phenomenon, it also is of much
interest in engineering circles because of the rapid damage cavitation can do to even the
toughest materials. In the presence of cavitation, rapid pitting and other surface and
structural damage can occur very quickly. For this reason improved understanding is
needed to circumvent its damaging nature.

Cavitation occurs in many different forms. In some cases, cavitation occurs as a bubble
cloud moving through the flowfield. Such cavitation is referred to as cloud cavitation. In
other cases, cavitation appears as a bubble attached to the surface. This phenomenon is
known as sheet cavitation. A third type of cavitation is vortex cavitation in which
cavitation bubbles appear in the low-pressure core of a propeller tip vortex. The present
report focuses on the second of these types, attached or sheet cavitation.

The dynamics of attached sheet cavitation are highly complex. The flowfield is two
phase with both liquid and vapor being present. In nearly every case, the flowfield
contains significant unsteady effects and the flow is generally three-dimensional. The
multi-phase nature and the unsteadiness both increase the difficulty of making diagnostic
measurements. The presence of the vapor phase can make the fluid opaque so that
optical diagnostics cannot be employed. In addition, the unsteadiness makes it difficult
to document the local nature of the flow. Despite these difficulties, large numbers of
experiments have been conducted, and there is a considerable volume of data available in
the literature. Certainly, this existing data has given much light on cavitation processes,
but detailed local understanding of the cavitation phenomena is still lacking. The present
study looks at applying detailed CFD computations to cavitating flowfields as an aid for
guiding and improving experiments and as a means of providing increased understanding
of the experimental results obtained to date.
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Experimental observations of attached cavitation have provided us with a considerable
understanding of cavitation processes. Experimental observations of cavitation on a
hydrofoil have consistently shown that the surface pressure lies below the vapor pressure.
In addition, the location at which cavitation appears generally exhibits a pressure that is
somewhat below the vapor pressure for the fluid temperature of interest. The cavity can
appear in the nose-region of a hydrofoil, at the mid-chord position, or near the trailing
edge. A particularly appropriate study for the present analysis is the two-part study of
Franc and Michel (1996). Their data clearly shows that the location at which cavitation
appears on an isolated hydrofoil is a function of the angle of attack as well as the
cavitation number.

Attached cavitation typically produces long, thin cavitation regions. The aft-end of the
bubble is generally highly unsteady and is composed of a two-phase region in which the
fluid in the vapor is converted back to liquid. The interface between the liquid and the
vapor can be shiny or diffuse. A shiny interface generally implies that the interface is
laminar, while a diffuse interface is generally characteristic of the presence of turbulence.

- Of particular interest is the experimental observation that the leading edge of the cavity

can sometimes appear downstream of the minimum pressure point on a hydrofoil. This
implies that the liquid successfully negotiates the lowest pressure region in the flowfield
without changing to vapor, but then cavitates (or switches to vapor) at some higher
pressure. This clearly suggests that non-equilibrium phenomena can be a part of the
cavitation process.

Cavitation Models

Over the years a number of cavitation models have been used to study the cavitation
process. The simplest of these treats the cavity as a constant pressure region that is filled
with vapor. The pressure in the constant pressure cavity region is set equal to the vapor
pressure of the liquid. The interface between the vapor and the liquid is then treated as a
constant pressure streamline. The shape of the interface is dictated by the dynamics of
the liquid flow and the trajectory of the constant pressure interface. Since the interface is
a streamline, it is clear that in this ‘cavitation’ model, no cavitation occurs. The liquid
flows around the bubble and the pressure of the liquid dictates the shape of the interface.
The cavity consists of a fixed volume of vapor, but the vapor inside this bubble is
quiescent. Consequently, this cavitation model does not involve cavitation at all (expect
perhaps at very early times when the liquid inside the cavitation bubble was initially
converted to vapor).

A major difficulty with this type of model is that it requires some ‘closure’ condition at
the aft end of the cavitation bubble. The closure condition can take on several different -
forms, but one classical method is to use an artificial body or wall to guide the liquid
back from the interface (which will normally be above the hydrofoil surface) so that it
becomes attached to the hydrofoil surface once more. Combination of this simple
cavitation model with a velocity potential model or a full Navier-Stokes formulation is




generally quite effective. The constant pressure cavitation region gives reasonable
agreement with experiment, but it does lack fundamental understanding.

The emphasis in the present research is upon using a more physically realistic description
of cavitation that can help to provide more mechanistic understanding of cavitation
phenomena and can lead to improved understanding and control.

Present Approach

The modeling approach used in the present research is based upon highly resolved
numerical solutions of the full Navier-Stokes equations coupled with a detailed model for
the presence of cavitation. To provide an appropriate vehicle for incorporating the
cavitation model, the Navier-Stokes equations are expressed in a generalized form that
describes an arbitrary fluid with an arbitrary equation of state. The arbitrary fluid
description facilitates the extension to a multi-phase model of cavitation.

To provide appropriate background, we start by writing the Navier-Stokes equations for a
pure (single-phase, single-component) fluid. We then introduce the auxiliary cavitation
model. Although most of our results are based upon a two-fluid model, we briefly
summarize a single-fluid model that we have also tested. Both the single-fluid model and
the two-fluid model follow directly from the generalized Navier-Stokes formulation.

The Navier-Stokes Equations: In vector notation, the equations of motion can be written
as:

00, 90 OE OF oG
r—2 + 2= =
o o am ay az

In this expression, (x, y,z) represents the Cartesian coordinates, # is the physical time
describing unsteady transients, and T represents a pseudo-time that is used for iteration at
a given time step. The quantities Q,,,0,E,F,and G are vectors containing the primitive

variables, the conservative variables, and the conserved fluxes in the x, y, and z directions
respectively. They are given as,
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The quantity, I', that multiplies the pseudo-time derivative is a matrix that is used to
ensure that all terms in the equations are properly ordered so that the pseudo-time
iteration converges efficiently under various limiting conditions.

The quantity, v.., signifies the diffusion or ‘viscous’ terms which are given by,

) 90, 9 90,) 9 90,) 9 00,
t=2 R, —L |+ 2R, =P |+ 2| R, 2P|+ 2R, =P
vt ax( o )+ax( 2 Taxl o ol ™™ o |

O (g %), 0(p ) 0fp 9) 2y ) 3f, 2
$[R”_ay"]+ay(’eﬂ? B N I B ™

The vector of dependent variables, Qp , that appears inside the diffusion terms is the
same variable that is used as the primary dependent variable on the left-hand side of the
equation. Note that the vector that appears inside the physical time derivative is Q rather
than Q,,. The change from Q to Q p simplifies the computation without compromising

the global conservation advantages of the conservative flux terms.

The quantities, Ry, Ryy , etc. that appear in the diffusion terms are matrices that contain

the diffusion properties of the fluid in question. In most cases of interest for cavitation
modeling, the primary diffusion properties are the viscosity, i, and the thermal
conductivity, k. The physical properties of the fluid are the primary terms in the subject
matrices. In general, all nine of these matrices are highly sparse. For a general
compressible fluid for which the Stokes approximation has been made, these matrices
take the form:
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Note that the first row of all nine of the matrices, Rxx,ny , etc. is entirely zero. This

corresponds to the well-known fact that the continuity equation contains no diffusion
terms. Similarly, the first row of all nine matrices is zero, indicating that the pressure
does not appear explicitly in the diffusion terms. The remaining term in the second, third
.and fourth rows describe the viscous forces that appear in the three components of the
momentum equations. Note that only the viscosity appears in the second through fourth
rows. The energy equation is the only row that contains multiple entries in each matrix.
These multiple entries contain the heat conduction term (the diagonal term multiplied by
the thermal conductivity), and the velocity components multiplied by the viscous




coefficient. The product of velocity and viscosity represents the viscous dissipation of
kinetic energy into heat energy. These terms, taken together, describe the so-called
viscous dissipation terms.

The equations of motion are completed by an equation of state, a thermodynamic relation
that defines the enthalpy in terms of two other thermodynamic variables, and
mathematical functions describing the viscosity and thermal conductivity as a function of
two thermodynamic variables. Since the temperature and pressure both appear in our

primary dependent variable, Q,,, we choose to express all four of these parameters as

functions of the pressure an temperature. Thus, the equation of state is taken as an
arbitrary function that relates the density to the temperature and pressure,

p=p(p.T)
The ehthalpy isAlikewise given in terms of the pressure and temperature as,
h=h(p,T)

The transport properties (viscosity and thermal conductivity) are likewise expressed as
arbitrary functions of pressure and temperature. For the viscosity,

w=n(p,T)
and for the thermal conductivity,
k=k(p,T)

Finally the stagnation enthalpy connects the enthalpy and the kinetic energy,

ho =h+f;-(u2 +v2 -_i-wz)

The Navier-Stokes equations given above, along with these four auxiliary relations, and
the definition of the stagnation enthalpy gives a fully defined system that describes fluid
flow under very generalized conditions. If the continuity equation is replicated so that it
applies to multiple species or phases, the equations can likewise describe the flow of
multi-component and/or multi-species flows. One of our cavitation models uses a two-
phase description. Similarly we could include multiple momentum equations and/or
multiple energy equations to cover these complexities.

We have tested two different cavitation models based on this general formulation. One
uses a single-phase representation, while the other uses a two-phase description. These
~ two models are described briefly below. As noted above, the two-phase model represents




our preferred model, but its characteristics are more properly put in focus by comparing it
with the single-phase fluid.

Single-Phase Cavitation Model: The single-phase cavitation model was the first model
we used to simulate the liquid/vapor phase change process. In this model, the density of
the fluid is treated as a continuous, single-valued function of the pressure. To account for
cavitation, we replace the discontinuous change in density at the cavitation pressure by a
rapid, but continuous variation. For convenience, we also simplify the equation of state
so that the density is a function of pressure only, p = p(p), instead of a function of both

pressure and temperature, p = p(p,T). This allows us to replace the energy equation by

the statement that the temperature is constant. This approximation is not necessary, but
simplifies the analysis slightly in that the energy equation is uncoupled from the
momentum equations for this ‘compressible’ fluid and need not be solved.

The net result of this single-phase cavitation model is that as the pressure is decreased
below the vapor pressure the density of the water decreases from a value corresponding
to that of a liquid to one corresponding to that of a vapor. A transition in the opposite
direction occurs when the pressure is increased above the cavitation pressure. With this
model, the density of the fluid in the vicinity of a hydrofoil rapidly decreases from liquid-
like conditions to vapor-like conditions in a continuous manner as the surface pressure
approaches the cavitation pressure. Making the density-pressure curve continuous rather
than discontinuous as it is in under equilibrium conditions simplifies the numerical
procedure while retaining much of the physical characteristics of the cavitation process.

In the computations, the pressure increment across which the transition between “liquid”
and “vapor” regimes was accomplished was treated as a parameter. The transition
between the two densities was parameterized by choosing a pressure increment, Ap, as a

fraction of the dynamic pressure. Excellent results were obtained when Ap was set to

30-40% of the dynamic pressure, but solutions could also be obtained when it was
reduced to a few percent. Dropping the temperature from the equation of state also
decouples the energy equation from the equations of motion as in incompressible
formulations although it is emphasized that the present formulation contains a finite
speed of sound (in the transition region), and allows large changes in the density. This
single-phase model therefore represents a simple approximation to cavitation in a
constant temperature fluid. :

In representative computations with this model, the pressure increment across which the
transition from the 'liquid' to the 'vapor' regime was accomplished was treated as a
parameter. The transition between the two densities was parameterized by choosing a
pressure increment, Ap, as a fraction of the dynamic pressure and connecting the 'liquid’
density with the 'vapor' density by a cubic equation that was first-derivative continuous at
either end. Excellent results were obtained when Ap was set to 30-40% of the dynamic
pressure, but solutions could also be obtained when it was reduced to a few percent.
Representative pressure-density curves for the single-phase model are given in Fig. 1 for




a series of values of Ap. These curves give an indication of the shapes of the 'equations
of state' used for the single-phase computations.

As was noted above, dropping the temperature from the equation of state decouples the
energy equation from the equations of motion as in incompressible formulations.
Nevertheless it is emphasized that the present formulation is fully compressible. It allows
large changes in the density and results in a finite speed of sound. For a fluid with the
equation of state, p =p(p), the speed of sound is given by the square root of the

pressure-density derivative,
o [®
dp

For the present single-phase computations, the equation of state was divided into three
sections, a vapor region, a transition region, and a liquid region. In the vapor and liquid
regions the density was taken as a linear function of pressure to give a quantitatively
realistic speed of sound. In the transition region, the density was expressed as a cubic
function of the pressure. The three regions are given as,
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In these expressions, p; and p, represent the pressure transition points, p; and p,, are
the corresponding densities, and Ap = p; — p,, signifies the width of the transition region.
The quantities, ¢; and ¢, are the speeds of sound in the liquid and vapor. These values
are taken from the literature. The liquid speed of sound, c; was taken as 1510 m/s,

corresponding to conditions in water at 293K. The speed of sound in vapor, c,, was

chosen as 420 m/s corresponding to the speed of sound in a perfect gas with a molecular
weight of 18, and a specific heat ratio of 1.286 at 293K and one atmosphere.

The proportionality constants in the vapor and liquid regions in the example above are
chosen to give a constant speed of sound in the pure media that is representative of that of
the physical fluid. For computational purposes, this choice is arbitrary. The common




alternative of infinite speeds of sound (incompressible fluid) in each phase is equally
valid. In the vapor region, the speed of sound should vary with local conditions, but a
constant is appropriate for constant temperature vapor.

The speed of sound in the transition region varies continuously from the value in the pure
vapor region to the value in the pure liquid region, but it reaches a quite low minimum in
the intervening region. In particular, since the derivative of the pressure-density function
is continuous at the liquid and vapor 'boundaries', the speed of sound at either end of the
transition region is equal to that in the appropriate pure fluid. In the transition region, the
speed of sound starts at the value corresponding to that of the vapor, then decreases
rapidly to a very low value until near the end of the transition region at which point it
increases rapidly until it reaches the speed of sound in the liquid. This continuous
variation of the speed of sound in a mixture with a very low sound speed over most of the
mixture region is typical of vapor-liquid mixtures. In the present case, the magnitude of
the sound speed depends upon the width (Ap of the transition region. When Ap is

increased, the speed of sound in the transition region increases. When Ap becomes very
small the speed of sound in the transition region becomes very small. In the limit as Ap
goes to zero (dp/ dp - oo), the speed of sound drops to zero. Consequently, supersonic
velocities are easily encountered in the vicinity of the transition region. Representative
curves showing the variation of the speed of sound in the transition region are given on
Fig. 2 for a series of Ap's.

Preliminary results based upon this model were obtained for an ellipse, a NACA 66(mod)
at one and four degrees angle of attack, and for flow over a cylinder. Results for the
ellipse are given on Fig. 3 which shows Mach number curves for flow over an ellipse at
minus 2 degrees angle of attack. Because the angle of attack is negative, the high
velocity flow region occurs on the under side of the ellipse. The speed of sound in the
single-phase liquid state is 1520 m/s (corresponding to the sound speed in water), so the

Mach number there is on the order of 107>. Near the hydrofoil, the flow passes through
the density transition shown on Figs. 1 and 2 where the speed of sound decreases rapidly.
Consequently, the Mach number in the density transition region increases from nearly
zero to above Mach 5 and then back to the incompressible regime in a very thin zone.
Inside the high Mach number zone, the fluid is pure vapor, while outside it is pure liquid.
Thus, the Mach number contours graphically describe the shape and size of an attached
cavitation bubble on the underside of the ellipse near the leading edge.

Comparisons between the predictions from the single-phase model and experimental data
from Shen and Dimotakis [1] for a NACA 66 hydrofoil were also made, but are not
shown herein. The comparison indicated that the single-phase model could replicate the
main features of sheet cavitation for both leading-edge and mid-chord cavitation. In
particular quantities such as surface pressure and cavity length were predicted reasonably
well. A series of different values of Ap (the width of the density-pressure transition)

were used to ascertain the effect on cavity length and thickness. For cases where Ap was

20 - 40% of the dynamic pressure, reasonably good convergence to a steady solution was
obtained. When the values of Ap were decreased to approximately 1% of the dynamic




pressure, the cavity interface became much sharper; however, the numerical stability of
the algorithm deteriorated significantly, even with TVD shock capturing. Simulations
could be run, but the values of the time-step were too small to obtained converged
solutions. In assessing the results, it appeared that the reason for obtaining steady
solutions was numerical rather than physical in nature. At larger values of Ap the
interface between the liquid and the vapor was spread out over a number of grid points
and this appeared to stabilize an otherwise unsteady flowfield. This steadiness
disappeared as the width of the transition region was decreased. Further, for cases in
which the transition region was too wide (i.e., the value of Ap was increased), the

relatively small decrease in pressure did not allow the density inside the cavity to drop
below the vapor density.

In addition to producing steady cavities, a second, and more fundamental, difficulty with
the single fluid model is that it strictly enforces an equilibrium assumption on the
cavitation process. With the single-fluid model, it is impossible for the cavity to start
downstream of the low pressure point on the airfoil (as is observed experimentally). The
single-fluid model requires that cavitation start as soon as the pressure reaches the vapor
pressure. so that in all cases, the leading edge of the cavitation bubble will be ahead of
the minimum pressure point. This effect is countered by the dual-phase model described
below.

Dual-Phase Model: The dual phase model treats the cavitation problem by considering
two distinct phases, a liquid phase and a vapor phase. Each phase is treated by a separate
continuity equation, but a single momentum equation is used for the mixture. The
transition between phases is modeled by a rate process which appears in the separate
continuity equations as a source and a sink of each phase. In the present model, the
effects of surface tension are ignored and both liquid and vapor are allowed to co-exist
over a range of pressures. The use of a rate process for converting liquid to vapor and
vice-versa allows the cavitation inception point to occur downstream of the minimum
pressure point in agreement with experiment thereby giving it a meta-stable-like
character.

To incorporate the two phases into the computational formulation, the equations of
motion are augmented by adding a second continuity equation and by incorporating
source terms to account for mass conservation during phase change. For treating the two
phases, we introduce the volume fraction of vapor, or the void fraction, o, which
represents the volume fraction of vapor present at any point. The volume fraction of
liquid is then given as one minus the volume fraction of vapor (o;; =1-a,) since the
sum of the volume fraction of liquid and vapor must be unity. From the volume
fractions, the density of the mixture is then given by

p=a,p, + (l_av))l
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where p; represents the density of the liquid phase, and p,, corresponds to the density of

the vapor phase. The model for the two-phase mixture uses a different equation of state
for each phase. The equations of state are analogous to the single-phase equation of state
given above:

P =Py (p,T), (liquid phase), and

py = pv(p;T), (vapor phase).

The equations of motion of the two-phase system can then be written in a vector form
analogous to that used above for the single-phase model.

Before going further, we digress to compare the volume fraction with the mass fraction
and the mole fraction that are traditionally used in mixtures of gases. First of all, note
that the volume fraction has the units:

_ volume of vapor mE

v ; T3
volume of mixture M

The density function described here for the vapor (or for the liquid) has standard units of
density:

_ mass of vapor _ kg,

"~ volume of vapor m3

That is to say, the density of vapor (liquid) is defined as the mass of vapor (liquid)
divided by the area that the vapor (liquid) occupies. As a result, the density of the

mixture, p = a,p, +(1—o., )p; has the units:

‘ k mi k k k ko .
NPPUVEPOEE S SIS

Clearly, these are the correct units.

When the mass fraction, ¥, is used, the partial density is defined in a different manner.
The mass fraction has the units,

mass of vapor kg,
mass of mixture kg,

Y, =
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and when multiplied by the density of the mixture we have,

kg, kgnix . ke kg K k ko -
p:va+(1—-YvX)-_-kggv gmLx+ 8l K8mix _ <§v + fl _ g?:mx

mix My K8mix My My Mmix ~ Mpmix
By comparing units, we can relate the mass fraction to the void fraction as,

kgmix k 3 kg, ke
pY, = a,p, = gm.xkgv = 721; 3?= 3v
Monixe ®8mix My 1y, My

From the above relation, we can express a ‘partial’ density,

b, =p¥, = mass of vapor _ kg,
v = =

v . 3
volume of mixture My

The partial density corresponds to the density the vapor (liquid) would have if it were
oblivious to the existence of the liquid (vapor) and occupied the entire volume assigned
to the fluid. The partial density is the density that is typically used in multi-species
mixtures of gases. Note we use the superscript caret to distinguish this partial density
from the vapor density that appears when we use volume fractions. Also note that the
units are different. The density of the vapor, p,, is the mass of vapor divided by the

volume the vapor occupies. The partial density, p,,, is the mass of vapor divided by the

total volume the fluid occupies. In the volume fraction expression, the density, p,,

represents the standard density—the total mass of vapor divided by the volume it
occupies. In the mass fraction representation, the partial density denotes the total mass of
vapor divided by the entire volume occupied by the mixture. This density implies that
the vapor does not ‘see’ the liquid and responds just as though it were the only specie
(phase) present. The difference between these two densities is exactly the difference in
using Dalton’s law of mixtures (for the mass fraction case) instead of Amagat’s law (for
the volume fraction case). Both are equivalent and both give the same answer. For
computational purposes, there may however be a preference for one over the other.

The third way to express the mixture properties is in terms of the mole fraction,

_ molesof vapor _ mol,

mole of mixture mol,,;,

The mixture density is then obtained as,

_MpiYy _ kg, mol, kg _ _mol,

M, kgmix kgy mol,;, mol,,,ix

XV

12




where M,,;, represents the mean molecular weight of the mixture and M, is the
molecular weight of the vapor. From this relation, we find,

v Xy
oY, =a,p, =220ty

mix
but

pM, =kgmix kgy molyi - kg, moly;, zkgv
M,,;, mol, kg, mol,  m3

3 3
Mypix Mypix

where we have related the molecular weight to the volume. Consequently, the mole

fraction is analogous to the volume fraction.

For two-phase flows the mass fraction and the volume fraction are equivalent, but
generally the volume fraction works better.

3 3 37 .3 3 3
Myyix mv My My Mypix  Mypix Moy

3 .
p= vav+(1 X X) mv kgv+ nmy kgl__ kgv + kgl __kgmlx

Formulation for Time-Accurate Computations: The above development applies to steady
state flows only. For the cavitation problem, it is imperative that we consider time-
accurate flows to be able to simulate the unsteadiness that is characteristic of flows with
attached sheet cavitation. For implementation in a time-accurate sense, we write the
dual-time version of the two-phase equations. We include the physical time as part of a
four-dimensional divergence (x, Yy, z,t) operator and add a pseudo-time term, T, for the
iterations at each time step (or for iteration to the steady state if the physical time
derivative term goes to zero). We then wuse conservation variables,

0= (o,pu, pv.pw, ph0 - py in the physical time derivative and the primitive variables in
the pseudo-time derivative -along with a preconditioning matrix. The resulting vector
form then becomes:

0 aQ aE oF oG
roe 9F G _piv
7 o ok oy e V!

where H represents the source (and sink) terms in the continuity equations representing
phase changes.

The two continuity equations can be expressed as one equation for the liquid and one for

vapor phase or as the global continuity equation (the sum of these two) and either of the
phasic equations. Here we express the system in terms of the total conservation of mass
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equation (the sum of the liquid and gas phase equations) and the liquid phase
conservation equation. With this choice, the terms in the equations become,

(p) ([ p ) ( pu ) pv ([ pw )
u pu pu2 +p puv puw
0, = v 0= pv F= puv . pv2+p G= p2vw
w pw puw pvw pw+p
T ph® - p puh? pvi? pwh?
0 . Py ) pioqu piCyv pioyw

The system is completed by specifying two equations of state:
pr=p(p.T), and p, =p,(p.T),

given earlier, along with the definition of the mixture density,
p=oyp; +(-ay)p,

The system is then closed by specifying analogous thermodynamié relations for the
enthalpy of each phase,

W =k(pT) and h, =h(pT)
The mixture enthalpy relatién likewise follows the relation for the total density,

ph=oyphy + (1~ )p,h,

The important properties that appear in the Jacobian of the flux term and also in the
preconditioning matrix are given by differentiating the density function(s) in the
continuity equation(s) to get the partial derivatives of density with respect to pressure,
temperature and volume fraction. These are most readily obtained by computing the
Jacobian,

Pp 0 0 0 pr pg)

ppu p 0 0 pru pgu

_aQ_ B ppv 0 p 0 ppv pyv
90, | Ppw 0 0 p prw pow
-(l—php) pu pv pw phr  phy

L Pp 00 0 proy o




where subscripts refer to partial differentiation. For example, the terms with the
subscript, p, represent derivatives with respect to the pressure, and are defined as:

_[ 9% _[ 90y
plP _( ap ]u,T,OL pVP _( ap u,T,0

and

11

dp op; P,
— = oy| —+ 1- = +(1-
pp (ap ]u,T o al( ap ju,T,OL +( al{ ap u,T,o alplp ( " bvp

The terms with the subscript, T, represent derivatives with respect to the temperature.
They are defined as,

apl ) (apv )
Pir =| =4~ Pvr = oo
( dp p.u,0 wo\er 0

and

DTE(— =0y| == +{1-oy = aypir +([1— oy )y
oT o oT " oT oy v

Finally the derivative with respect to the volume fraction, o, also appears. This term is

Pa E(_‘J =P =Py
aal pu,T

Note that derivatives of the individual densities with respect to the volume fraction are
identically zero since the phasic densities do not depend upon the volume fraction,

(aﬂ] -0 (?p_] _0
aoc, put,T Bocl pu,T

The viscous terms in the two-phase equation system are identical to those given above
“except for the additional equation and are not re-written.

The primary new term in the equations for the two-phase system is the source term, H,
which ensures local conservation of mass when liquid changes to vapor or when vapor
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changes to liquid. These source terms correspond to the phase transition model. For the
liquid volume fraction equation, the source term includes one contribution that describes
the rate of conversion of vapor to liquid and one for the conversion of liquid to vapor.
The conversion from vapor to liquid appears as a source term in the liquid volume
fraction equation, while the conversion from liquid to vapor appears as a source term.
These terms appear on the right hand side of the conservation equation and take the form,

oo
Ly

0 Ipog , dproyu _ oy, (1-0y)
LA " ox T,

where T; and T, are the characteristic times for conversion from liquid to vapor and

from vapor to liquid respectively. These times are chosen as being proportional to the
local pressure difference,

for p<p,: i=O; 1_tlp-py and
T Ty, T q

for prV: i_—_iﬁ__&, i:o
T T g Ty

A representative choice with K = (K, /K;)=1/ (o +p, 7 p;) is shown on Fig. 2 for

various values of K ranging from 1.0 to .001. The corresponding ratio of the speed of
sound in the two-phase mixture to the speed of sound in the liquid is given on Fig. 3. This
figure shows the familiar minimum in the sound speed when changing from 100% vapor
to 100% liquid. Note that in the case where the liquid and vapor densities are equal, that
no minimum speed of sound appears between the liquid and gas phases.

Franc-Michel Experiment: Franc and Michel [1,2]have reported a series of cavitation
experiments on hydrofoils that are appropriate for calibration and validation purposes in
the above models. Their experiments show that turbulent spots from exploding nuclei
can remove sheet cavitation, but that leading edge sheet cavitation is resistant to the
presence of free-stream nuclei and to the boundary layer state, whether it is laminar or
turbulent. Their cavitation results show that the cavitation pattern is two dimensional
near the leading edge where it appears at large angles of attack and high cavitation
numbers. Mid-chord cavitation appears at middle angles of attack and middle values of
the cavitation number. Mid-chord cavitation tends to be three dimensional. When the
angle of attack and the cavitation number are both low, cavitation occurs at the trailing
edge. Trailing edge cavitation is generally predominantly two dimensional.

Careful sequences of measurements show that cavitation moves from the trailing edge to
the leading edge as the angle of attack is increased. In general, attached cavitation is
established downstream of boundary layer separation, but as the number of free-stream
nuclei increases, cavitation moves toward the minimum pressure point. When the
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boundary layer transitions from the laminar to the turbulent state, the turbulence
generally eliminates attached cavitation. Finally, Franc and Michel’s experiments show
that for selected angles of attack, decreasing the cavitation number can cause cavitation to
first appear, then disappear and finally reappear again. This non-monotonic behavior and
particularly the fact that decreasing the cavitation number causes cavitation to disappear
suggests that non-equilibrium effects are present.

Predictions from Two-Phase Model: A series of computations has been computed with
the dual-phase model. In general, these results are unsteady and exhibit fluctuations
around the trailing edge, and in some cases the leading edge, of the cavitation region. As
the cavitation number decreases (and the size of the cavitation bubble increases), the
flowfield becomes more and more unsteady. Some representative results from the two-
phase cavitation model are discussed in the present section. Most of the results shown
have been computed on a multi-block grid involving typically 20 to 30 blocks, although
where noted the results have been obtained on a single-block grid. Representative grids-
are shown on Figs. 6 and 7 for both the near field and the far field. The plots that show
the multi-block results include the outline of the multiple blocks. The present two figures
are for grids of 30,000 nodes each. The multi-block configuration in Fig. 6 uses 30
blocks.

As a first example of the predictions from the two-phase model, we show results for flow
over the NACA 66 (mod) hydrofoil used in the Shen-Demotakis experiment referred to
above. Figure 8 shows the density and pressure contours for flow at 4 degrees angle of .
attack and a cavitation number of 0.91. The Reynolds number is one million, and the
density ratio between liquid and vapor was taken as 100. Since the density is constant
over the entire liquid region, the density contours appear only in the cavitation bubble
region. The pressure contours, however, are distributed over the entire flowfield and, in a
qualitative sense, retain the familiar pressure distribution of single-phase flows. Close
inspection of the flow near the cavitation region, however, shows the pressure is
essentially constant inside the cavity as is frequently assumed in simple cavitation
models. We note that the pressure in this region does retain weak variations rather than
being strictly constant. In addition, the (nearly) constant pressure region appears as a
result of the computation, not as the result of an assumption in the modeling. Again, the
background segments in the plot represent boundaries of the multi-blocks, and are not a
part of the solution.

A close-up view of the details in the cavitation region for this same computation is shown
in Fig. 9. The velocity vectors in this region show the presence of a re-entrant jet on the
downstream end of the cavitation region. This narrow re-entrant jet flows forward
against the free-stream flow direction and lies between the rear-most part of the cavity
and the surface of the hydrofoil. In addition, the flowfield gives the suggestion that a
portion of the cavity is about to be shed into the wake. Long-term computations do show
that the cavity length fluctuates slowly as the result of such periodic shedding.
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Figure 10 shows the pressure contours over a wedge patterned after experiments by
Ceccio. This figure shows the pressure contours on the fully wetted wedge as a function
of the distance along the wedge surface. The results contrast the pressure contours when
cavitation is present with those when the wedge surface is fully wetted. The presence of
cavitation shows a decided change in the surface pressure that should be measurable
experimentally.

The next several figures concern the flow over a NACA 16-012 hydrofoil like that used
in the Franc and Michel experiments. Both multi-block and single-block grid
computations were obtained for this airfoil. In both cases, the grid contained from 20,000
to 50,000 grid points. The intent of these computations was to provide a fine enough grid
structure to ensure that the conclusions deduced from the results were not grid dependent.
The following figures show representative solutions on these and similar grids.

Fig. 11 shows an attempt at a laminar flow solution over the NACA 16-012 hydrofoil.
The flow conditions of interest were, of course, turbulent, but a series of laminar flow
solutions were attempted to understand the underlying flowfield without the uncertainties
introduced by a turbulence model. For all but the very lowest Reynolds number
conditions attempted, the laminar solutions resulted in laminar separation at the trailing
edge, and the resulting flowfield was highly unsteady. Figure 11 shows the flowfield at
one instant of time in a computation at a Reynolds number of 75,000. The highly
unsteady flowfield is clearly indicated here. ”

The emphasis in modeling cavitation is on finding hydrofoils that contain laminar flow
over the leading edge where the cavity develops, but turbulent flow over the trailing edge
to prevent laminar separation and to stabilize the flowfield. The present laminar
computations demonstrated amply that the unsteadiness from a completely laminar
solution would not allow cavitation studies to be done without a turbulence model. It is
imperative in cavitation studies, however, that the turbulence model provide a non-
cavitating flowfield that is qualitatively proper. Specifically this means that the flow
must be laminar over the leading edge of the hydrofoil to allow cavitation, but turbulent
at the trailing edge to prevent separation. Experimental evidence shows that the presence
of turbulent flow near the leading edge prevents the formation of attached sheet
cavitation. The present model is probably not sensitive to the presence of turbulence in
establishing cavitating regions, but it is important to establish a correct flowfield to
enable later improvements.

One of the characteristics of the Franc-Michel experiments is the manner in which the
cavitation position moves from the trailing edge to the leading edge. Franc and Michel
also noted that the locations of transition to turbulence and separation likewise varied
with angle of attack. The present results are computed with the k-e model, and the free-
stream turbulence has been carefully adjusted to get the transition location and the
turbulence behavior to match that of the experiments. Results for two different levels of
free-stream turbulence are illustrated below to indicate the manner in which the flowfield
changes with the turbulence level, and the sensitivities involved in matching the fully
wetted airfoil experiments.
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As a first example of the effects of a turbulence model, we present on Fig. 12 the velocity
contours and the ratio of the eddy viscosity to the laminar viscosity for the NACA 16-012
hydrofoil at zero degrees angle of attack. The present computation uses third-order
upwind differencing and implicit discretization in time and is for a cavitation number at
which the flow is fully wetted and cavitation does not occur. As can be seen from the
figure, the solution, both in terms of the velocity and the turbulence level is symmetric
about the hydrofoil as would be expected. The level of free-stream turbulence in this
zero-degree condition has been adjusted to match the experimental observations at this
flow condition. Hereafter, we refer to this free stream turbulence level as the 'low'
turbulence level. As seen in the figure, the effects of turbulence are significant only in
the boundary layers near the trailing edge (approximately the last 10%) of the hydrofoil
and in the wake behind the hydrofoil. This local turbulent region is, however, sufficient
to remove the large-scale unsteadiness that was observed in the laminar calculation at Re
= 75,000 (Fig. 10). In contrast to that laminar case, the present turbulent case converged
very well to a steady state solution with a very small recirculation zone at the trailing
edge. Again, both the steady solution and the presence of turbulence over the aft 10% of
the hydrofoil are in agreement with the Franc and Michel measurements.

Corresponding results for the NACA 16-012 hydrofoil at three degrees angle of attack are
shown on Figs. 13 and 14. The chord Reynolds number for this case is again 300,000
and the same grid and solution procedures were used. Figure 13 shows contours of the
velocity and the ratio of turbulent to laminar viscosity for this three-degree angle of
attack. Here the velocity clearly shows non-symmetric (upper-to-lower surface) contours
because of the angle of attack. The eddy viscosity likewise shows a similar asymmetry.
The interesting fact is that turbulence starts at about mid-chord on the upper surface,
while its transition region on the lower surface is closer to the trailing edge than in the
zero-degree angle of attack case.

The corresponding pressure contours for the three-degree angle of attack case are given
on Fig. 13 along with a plot of the multi-block grid that was used for the computations.
The computed pressure distribution on the surface is in good agreement with
experimental measurements at these conditions. Again, the flowfield at oo =3 degrees
results in a well converged, steady solution. Finally, a near-field view of the ratio of
turbulent to laminar viscosity is shown on Fig.15. More details of the asymmetry in this
figure are discussed below. ‘

The effect of the freestream turbulence level on the flowfield solution is shown on Figs.
16 and 17 for two different free-stream turbulence levels. Figure 16 shows the solution
for the low' freestream turbulence conditions of the results in Figs. 12 to 15. The top half
of Fig. 16 shows a near-field view of the velocity vectors over the rear portion of the
airfoil for the zero-degree angle of attack, while the bottom half shows the results for the
three-degree case. Similar results are shown on Fig. 17 for a high free stream turbulence
level.
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Changing the free-stream turbulence level for the zero-degree angle of attack case (the
top plots of Figs. 16 and 17) has very little effect on the results. The velocity vectors in
both cases are quite similar. (Note that the A different (single block) grid was used for
the high turbulence results on Fig. 17 (this grid is given in Fig. 7), so that the locations of
the velocity vectors is somewhat different, but overall the two results are qualitatively
similar.

Results for the three-degree angle of attack are, however, considerably different. The
high free-stream turbulence calculation (Fig. 17) shows a thick turbulent boundary layer
on the upper side of the airfoil and a thin one on the lower side, while the low free-stream
turbulence case (discussed above) shows a thicker boundary layer on the lower surface.
Close inspection of this result shows that the reason that the boundary layer is thicker on
the lower surface is that there is a separation region at about 85% chord. Comparison
with the turbulence profiles in 16 indicates that this is a laminar separation and that the
turbulence appears downstream of the laminar separation position. This separated region
is the reason that the lower surface has a thicker boundary layer. The low turbulence
results are in agreement with the observations of Franc and Michel indicating that this
prediction is qualitatively in agreement with the experiment while the results at the higher
turbulence level (which is more representative of ‘typical’ conditions) are not.

The pressure distributions on the hydrofoil for these two cases are shown on Fig. 18. The
change in the turbulence level causes some changes in the pressure distribution near the
aft end of the hydrofoil where the flow separates from the surface.

Finally, a comparison with the results of Franc and Michel is given on Fig. 19. In this
figure, the locations of several boundary layer events are tracked as a function of the
angle of attack between negative ten and positive ten degrees. In particular, the plot
shows the location of the laminar separation point, the start of transition to turbulence, the
end of transition and the location of turbulent separation on the upper side of the airfoil.
As an example, the laminar separation point on the upper surface lies at about 90% chord
when the angle of attack is minus ten degrees. As the angle of attack is increased, the
laminar separation point moves forward in an approximately linear fashion until the zero-
degree angle is reached. At zero degrees, the location of laminar separation is at about
80% chord. As the angle of attack becomes positive, the point of laminar separation
continues to move forward, but is very rapidly overtaken by the start of transition to
turbulence at which point laminar separation ceases to exist.

Representative predictions from the present computations are included on Fig. 19 at -3, 0,
and +3 degrees angle of attack. The location of the laminar separation point is seen to
track the France and Michel results quite well at the -3 and the O degree locations. At the
+3 angle of attack, laminar separation is not observed on the upper surface, again in
agreement with the experimental results.

Results for the 'start' of transition are also indicated for the three angles of attack. The

computational results for the start of transition are seen to track the Franc/Michel results
qualitatively, although they are some 5% downstream of the Franc/Michel results. This
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difference in location probably arises because of different methods for identifying the
start of transition. The k-e model does not provide a direct measure of 'transition' and it
must be inferred from the velocity profiles. The computed results do show that the
transition location moves forward gradually in the negative angle of attack region, and
then moves much more rapidly in the positive angle of attack region.

Finally, the computations show a single turbulent separation point at the positive angle of
attack location. This turbulent separation point occurs at about 95% chord. Again, the
absence of turbulent separation (on the upper side) at the -3 and O degree angle of attack
cases is in agreement with the experimental observations. Overall, the present results
indicate that the turbulence model can reproduce the observed turbulence conditions on
the hydrofoil in the fully wetted condition and provide an appropriate background for
employing a cavitation model.

A substantial amount of cavitation results from the single-phase and the two-phase
models has been presented in Ref. 3 and shows that the two models give reasonable
predictions of cavitation for various conditions. The two-phase model provides
capability for the quasi-equilibrium results observed in numerous experiments and so is
the preferred model for additional calculations.

21




K44

24/ N 00 PUB 00€ ‘00T ‘001 = dV ‘[opowr pInfF-s[3uls oy} ul
pasn 23e3s JO cosms.co snonuruoos 10j uor3al UONISURY) UT SOATNO Esmmo.&.bacoa ‘1314

alnssaid

00S¢ 00v¢ 00€cC 0022 00le
I 1 1 _ | 1 1 1 — I 1 I ! _ | | | | | | } | 1 o

001t
002
00€

00

suap

00g

Al

009

004

008

006

IllllllllllllllllllIIllllII]llIllIllllllllllllllll

0001t

.1 TT [oo0z3dv vz T 109 oures]




1 XA

"4/ N 00 PU® 00€ 00T ‘001 = dy -owga1 uonisuey) ur aInssaxd
JO uonouny e se 9je)s Jo uonenbs snonunuoo Jo punos Jo paeads oyp Jo wipuego] ‘7 S

ainssaid
00S2 00V 00€2 0022 0012
| 1 ]

_ | | | I _ ! I | 1

1

lllllll L

|

Illllll

Ol

TTT Tooozidv vz | 100 swesy




Mach Number

5.1372
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B 413482
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Fig. 3. Mach number contours for flow over an ellipse at -2
degrees angle of attack based on single-phase cavitation
model. Transonic flow region outlines cavitation zone.
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